
Introduction to home

 and building

automation systems

Mariano Leva

leva@dis.uniroma1.it
In collaboration with:

Seminar Schedule

Lecture 1: introducing intelligence in a houses

what is an home automation system

an example of home automation systems: SM4All &

GreenerBuilding

layers of an home automation system

the actuation devices(relays, dimmer and serial port)

the communication layer (I2C, CAN, Ethernet, KNX, EDS)

the control layer (choosing the right hardware)

the interface layer (polling, piggyback polling and comet)

What is an home automation system

for home automation system we mean each technology voted

to the automation of the house

in this sense...

...the garden irrigation clock...

...the thermostat...

...the electrical shutters…

...are all example of easy home automation

question: are all of the houses equipped with home

 automation system?

What is an home automation system

answer: no

in general for home automation system we mean an

environment in which the actuation and the control are

decoupled at least by a firmware layer

a classic electric circuit has a wired (hardware) connection

between control and actuation, then it cannot be classified as

“home automation”

in the following we will use the term “home automation

system” or “domotic” in compliance to the definition above

Flow of information and flow of
energy

are not separated

Conventionl electrical circuit VS home automation

Again flow of information and flow of energy are not separated

Turn on/off a lamp
from 2 points

Turn on/off a lamp
from3 points

Conventionl electrical circuit VS home automation

Uniform connection principle

Conventionl electrical circuit VS home automation

Challenge and future direction

Yesterday:

interfaces: buttons and switches

integrated systems: ---

Today:

interfaces: buttons, switches, touch panel (wired and wireless)

integrated systems: audio/video (sometimes), thermal control,

windows and shutters, ad-hoc interconnection

Tomorrow (challenges):

interfaces: reduce as possible the needs of buttons, switches

and touch interfaces, the house must predict what the user

wants

integrated systems: potentially everything

...the house accessible as-a-resource by using a standard

library e.g. “import world.myhouse”

Layers of an home automation system

An example of an home automation system: SM4All

An example of an home automation system: SM4All

An example of an home automation system: SM4All

An example of an home automation system: SM4All

An example of an home automation system: SM4All

Fundamental concepts of SM4All

An example of an home automation system: GreenerBuildings

GreenerBuildings architecture

• Two living labs:
– an office room and a meeting room in the Potentiaal building in

TU/e campus

– an open space environment in the Metaforum building in TU/e
campus

• Fine-grained activity monitoring and different
showcases
– Adaptive lighting depending on user activities

– Adaptive meeting room (brainstorming or presentations)
adjustment of HVAC and light requirements

– Ubiquitous personalization. User is able to see control
possibilities of their environment from computer, smartphone
and tablet

– Background energy saving service. The framework enables
autonomous lighting system to address occupant comfort and
facility manager saving needs

GreenerBuildings deployment & showcases

GreenerBuildings deployment

Challenge and future direction

Research interests:

location component

follow-me function (open issue...)

find the right trade-off between the buttons and the touch

interfaces

open source solution for house interconnection

efficient energy-sharing and energy-management

space management for office-oriented house

Drivers:

the users are scared about the technology: they don’t want to be

controlled by a computer

the users don’t want “something more”, they prefer “something

known” with some “intelligence”

Challenge and future direction

Nice fast test: which is your favourite functionality?

a. open/close with a single button all the shutters

b. switch-off all the lights

c. control the house status from outside

The 70% of the users answered “b”...so: the more the

functionalities are simple and the more the users will

appreciate them

A generic home automation architecture

the actuation devices

The actuation devices

an actuator is a device that is able to modify the

environment

some examples:

a bulb light connected to a switch is an actuator

an automatic door is an actuator

an electrical shutter connected to a switch is an actuator

question: a relay is an actuator?

answer: potentially yes...

if the relay is connected to a device (ex. a bulb light) it can be

intended as an actuator

if the relay is not connected to a device...it is not an actuator

in general when we talk about relays we intend them

connected to devices

The actuation devices

from a low-level point of view an actuator always contains:

one or more relays

one or more dimmers

a serial port (more generally a communication device)

relays, dimmers and serial ports represents all of the devices

that can be controlled by an home automation system in order

to implement actuators

The actuation devices

The actuation devices: latching relays

SPST SPDT

DPST DPDT

The actuation devices: state solid relays

ADVANTAGES

 No moving parts, they use semiconductor to perform the switch

operation

Faster than electromagnetic latching relays

Totally silent

SHORTCOMING

High susceptibility to damage (a relatively high vulnerability to

overloads in comparison to electromechanical relays)

limited switching arrangements (SPST switching)

when closed, higher resistance (generating heat), and increased

electrical noise

Possibility of spurious switching due to voltage transients

The actuation devices: relays

a relay is required in order to switch on/off an electrical line

relays are useful because they use a low-voltage controller

(tipically 12V) to interrupt an high voltage one (220V or higher)

relays are the most common device for automation due to

several reasons:

they are inexpensive

they are reliable (large MTTF, the first patent of a relay is of

1840, they born with the telegraph)

they can have a very reduced size

the energy consumption of each relay is practically zero (and

really zero in the case of magnetic latching relays)

The actuation device: dimmers

a dimmer is an electric regulator used to change the lux level

it was invented in the 1961 by Joel Spira founder of Lutron

Electronics

a dimmer can be implemented in different ways:

rheostats-based dimmer

Increasing the resistance, the voltage on the

 lamp decrease

Not efficient, dissipate power of the load as heat

autotransformer-based (variac)

dimming by adjusting the output voltage for

 a steady AC input voltage

Heavy and unwieldy

The actuation devices: a very easy variac-based dimmer

The actuation devices: dimmers

a dimmer can be implemented in different ways:

Triac based dimmer -They operate stopping the voltage to the lamp

that reduce the available voltage, realizing the dimming

more efficient – the voltage is interrupted and not absorbed

Different modalities for the dimming

These three different modalities are used for different types of

loads

on

on

on

off

off

off

on

on

on
80%

20%
off

off

off

 Leading Edge Trailing Edge

• PWM: is a rapid succession of switching on and

off the lamp power. Used in DC voltage

The actuation devices: dimmers

The actuation devices: dimmer issues

variac-based dimmers offer best performance but

unfortunately they cannot be used for home automation due to:

the large size (and weight...)

the mechanic regulation

triac-based dimmers can be used for home automation but...

they introduce electrical noise (see next slide) - LC filtering circuits

are required, they are usually larger part of the dimmer

they are usually designed for specific load (if the user change it

they can have faults)

they can introduce problems with the electricity meters (because

they introduce some peaks during the triac commutation) - this is

so rare

The actuation devices: dimmer electrical noise

The actuation devices: serial port

is a standard

widely supported by programming language

Commonly, its parameters indicated by means of a conventional

notation (e.g. 8/N/1 meaning 8 data bits, no parity, 1 stop bit)

A generic home automation architecture

The Communication Layer

The communication layer

the communication layer is one of the most important part of the

automation system because it decides the bandwidth for the

data exchange:

a low-frequency (i.e. limited bandwidth) communication allows (i) to use

simple wires and (ii) to interconnect the device with a non-fixed

architecture but it makes impossible to transmit audio/video and complex

events

a high-frequency (i.e. large bandwidth) communication allows to transmit

whatever (also full-hd streams) but it imposes (i) to use a cat5/cat6 cable

(€++) and (ii) a fixed interconnection schema

the potential of each home automation system is always related

to the communication layer

The communication layer

in home automation systems the communication layer is always

(often) represented by a BUS

a BUS is the preferred solution because it dramatically reduces

the amount of cable

...even if a large amount of companies do not exploit this advantage..

a bad bus design example: 3 independent busses for a single

home automation system

The communication layer:
a brief overview on some famous bus standards:

I2C

CAN

Ethernet

KNX

EDS

question: we presents five “wired” protocols...why don’t we care

about wi-fi protocols?

possible answerS: reliability? ...security? ...or both?

The communication layer: I2C (Inter Integrated Circuit)

I2C was developed by Philips in 1982 (it becomes free from 2006)

it was designed for micro-controllers interconnection, so it works for

very limited extensions (less than a meter)

it was originally developed for low-cost application

speed: from 10 Kb/s to 400 Kb/s, 5 or 3.3 V, 7-10 address space

I2C is characterised by two bidirectional lines:

SDL: serial data line

SCL: serial clock line

Nodes are divided in masters and slaves

masters nodes can write on the Serial Clock Line (SCL) and also on SDL

slaves can only write on SDL

 only after a master invocation

The communication layer: I2C

the protocol:

a start bit followed by the 7-bit address of the slave it wishes to communicate

with plus a single bit representing whether it wishes to write(0) to or read(1)

from the slave.

If the slave exists on the bus then it will respond with an ACK bit for that

address (master must receive 0 on SDA for a clock round)

If the master wishes to write to the slave then it repeatedly sends a byte with

the slave sending an ACK bit.

If the master wishes to read from the slave then it repeatedly receives a byte

from the slave, the master sending an ACK bit after every byte but the last one.

The master then either ends transmission with a stop bit, or it may send another

START bit if it wishes to retain control of the bus for another transfer

The communication layer: I2C arbitration

Arbitration occurs very rarely, but is necessary for proper multi-master

support.

Each transmitter checks the level of the data line (SDA) and compares

it with the levels it expects; if they do not match, that transmitter has

lost arbitration, and drops out of this protocol interaction.

if two masters are writing exactly the same message to the same

address the collision will be not discovered, but it doesn’t represent a

problem, because slave will only see a message

The communication layer: CAN

CAN bus was originally developed by Bosh in 1983

CAN bus was designed for automotive electronics in order to

allows micro-controllers to communicate without an host

computer

CAN bus runs on a single twisted pair cable (up to 40 meters)

speed: 1Mb/s

CAN is data-frame oriented, if a message is divided in multiple

data-frames the devices must arbitrate the BUS for each

dataframe

CAN BUS implements priority based bus arbitration: high-

priority devices has an address close to zero, low-priority

devices the opposite

A message consists primarily of an ID (identifier), which

represents the priority of the message, and up to eight data bytes.

The communication layer: CAN

The devices that are connected by a CAN network are typically

sensors, actuators and other control devices

These devices are not connected directly to the bus, but

through an host processor and a CAN controller
The host processor decides what received messages mean and which

messages it wants to transmit itself.

The CAN controller stores received bits serially from the bus until an entire

message is available, which can then be fetched by the host processor

The host processor stores its transmit messages to a CAN controller,

which transmits the bits serially onto the bus.

Each node also requires a Transceiver

Receiving: it adapts signal levels from the bus to levels that the CAN

controller expects and has protective circuitry that protects the CAN

controller.

Transmitting: it converts the transmit-bit signal received from the CAN

controller into a signal that is sent onto the bus.

The communication layer: CAN

the protocol:

transmission: once a device hears the bus clear it can start to

transmit the message.

reception: once a device hears the start of a transmission it starts

to receive it if the message contains its address, the clock is

“extracted” from the message. All the message always starts with

a logic 1 and the address of the recipient device

Each node in a CAN network has its own clock, and no clock

is sent during data transmission

arbitration: CAN - like I2C - is a CSMA/CA protocol, each node

reads and writes the bus at the same time, once it writes 1 and

reads 0 it immediately stops to transmit. This ensure that the

device with a lower address obtains the precedence.

in CAN we talk about 0 as “dominant” and 1 as “recessive” states

CAN: base frame format

The communication layer: Ethernet [ETH]

ETH bus was developed by Xerox Parc between the 1973 and

the 1974 and it becomes a IEEE standard (802.11) in 1980

ETH bus was designed for Local Area Network

ETH was originally developed for coaxial cable, then the project

moved to twisted pairs (tx+/- and rx+/-). A CAT5/6 cable with

ETH can cover a distance of about ~100 meters

speed: 10/100 Mb/s (also 1 Gb/s), usually 10Mb/s

ETH is a CSMA/CD protocol: if a collision is detected both the

devices stop and retransmit after a random timeout.

In order to avoid starvation the random timeout is set up with an

exponential increment

The communication layer: Ethernet [ETH]

Ethernet frame is called packet, used to describe the overall

transmission unit and includes

Preambles

Start frame delimiter (SFD)

Source and Destination Mac Address

Ethernet Type indicating the type of frame. Different frame

type have different formats and different payloads

The payload section includes any header for other protocol

(e.g. Internet Protocol)

Frame check sequence is a 32-bit cyclic redundancy check,

which is used to detect corruption of data in transit

The communication layer: Ethernet [ETH]

question: why does ETH become so popular?

answers: it was presented two years before I2C and three

years before CAN, moreover it is an IEEE standard and it can

run up to 100 meters

question: why does the automotive prefer CAN even if ETH is

faster?

answers: because CAN is CSMA/CA and it implements priority

what-if the air-bags are connected using ETH? [...]

The communication layer: Konnex [KNX]

The standard, starting to be developed in 1990, is based on the

communication stack of EIB but enlarged with the physical

layers, configuration modes and application experience of

BatiBus and EHS

KNX is designed to run on a single twisted pair, even if are

available extensions for:

powerline

radio (KNX-RF)

infrared

ETH (known as KNXnet/IP)

KNX bus wire can be up to 1.000 meters (using repeater it can

reach 4.000 meters)

KNX is a CSMA/CA bus

speed: 9.600 bit/s, packets have a variable length

The communication layer: Konnex [KNX]

There are three categories of KNX devices

A-mode or "Automatic mode“, devices automatically configure

themselves, and are intended to be sold to and installed by the end

user.

E-mode or "Easy mode“, devices require basic training to install. Their

behavior is pre-programmed, but has configuration parameters that

need to be tailored to the user's requirements.

S-mode or "System mode“, devices have no default behavior, and

must be programmed and installed by specialist technicians.

KNX uses the Client/Server model, dividing the involved entities in:

AR (Application Resource), the device providing the service

AC (Application Control), the entity asking for the service

A KNX application is composed by functional block (FB) operating

on shared variable called data point (DPT)

DPT are standardized (e.g. DPT5 is a 2byte float used to represent

temperature values in floating point

The communication layer: Konnex [KNX]

in order to develop KNX devices the KNX consortium requires a

fee

KNX consortium is composed by:

GIRA

ABB

AMX LLC

Berker GmbH Co. KG

Bosch Thermotechnik

Cisco Systems

Control4 EMEA

Creston International

Daikin Industries

Embedded Automation

Jung

Legrand

Miele & Cie KG

ON Semiconductor

Hager

Schneider Electric Industries S.A.

Somfy

Radiocrafts

Bosch

Russound/FMP Inc.

Siemens

Toshiba

Uponor corporation

The communication layer: EDS

EDS was originally developed in 1999 and it is owned by World Data

Bus from 2004

EDS is a 9.600 bit/s CSMA/CD protocol

in EDS the collision detection is implemented via ACK messages: the

transmitter element does not listen to the bus during the transmission

phase

EDS is designed to work on a single wire, but usually it runs using 2+1

wires such that:

2 wires are dedicated to Vcc and Data

1 wire is the ground reference

the house ground system can be used...usually it is better to use a

dedicated line

twisted pair is not required, it is possible to use standard -

inexpensive - wires up to 1.200 meters (experimental uses show that

the protocol works till 1.600 meters without repeaters)

Dev 1

Dev 2

Dev 255

• 8-8 devices have

• 8 binary inputs

• 8 binary outputs

• An EDS bus system may have up to 255

devices connected to the same bus.

• The bus is both a power supply and a

data exchange medium.

• Each device is identified by a unique

physical address number, each channel of

the devices is identified by a number.

EDS bus system: an overview

Devices interact by exchanging

messages on the bus.

Byte Content

Byte 1 Stx

Byte 2 Receiver

Byte 3 Sender

Byte 4 Message type

Byte 5 Info 1

Byte 6 Info2

Byte 7 Checksum

Byte 8 Etx

Dev 1 Dev 2

m

Each message is exactly 8

bytes long and has a precise

structure.

EDS bus system: an overview

The communication layer: global recap

A generic home automation architecture

The Control Layer

The control layer

the control layer is the core of an home automation system: it is

the responsible of the decoupling between the control and the

actuation

it can be both firmware and both software

it can be distributed or decentralised

The control layer: possible architectures

The control layer: possible architectures

The control layer: possible architectures

The control layer: focus on the main controller

the main controller is usually a software component

the local controller can be firmware or software

How to choose the right hardware?

an example driven analysis...

Alix 3D3

Raspberry Pi

Jetway NG74

Cubieboard a20

The control layer: PC Engines Alix 3D3

i86 compatible CPU@500Mhz (AMD Geode)

256 Mb RAM

Flash HDD slot

fan less

Connectivity:

1 VGA

2 USB

1 jack audio

1 jack microphone

1 serial

1 ETH

< 100€ each

The control layer: Raspberry Pi model B

ARM CPU@700Mhz (ARM 11 family)

256 Mb RAM

SD HDD slot

fan less

Connectivity:

1 mini HDMI

2 USB

1 jack audio

1 ETH

1 GPIO (general purpose I/O)

< 40€ each

The control layer: Jetway NG74-2007

VIA Nano L2007 CPU@1.6GHz

up to 8Gb (2 DD3 slots)

up to TeraBytes (2 serial ATA2)

Connectivity:

1 HDMI

1 VGA

4 USB

1 ETH

1 serial

3 audio I/O port

1 GPIO

< 200€ each

The control layer: Cubieboard

ARM® Cortex™-A7 Dual-Core ARM® Mali400 MP2 Complies with

OpenGL ES 2.0/1.1

1GB DDR3 @480M

3.4GB internal NAND flash, up to 64GB on SD slot, up to 2T on 2.5

SATA disk

1x 10/100 ethernet, support usb wifi

2x USB 2.0 HOST, 1x mini USB 2.0 OTG, 1x micro sd

1x HDMI 1080P display output

1x IR, 1x line in, 1x line out

96 extend pin interface

< 70 € each

The communication layer: global recap

Alix Raspberry Jetway Cubieboard

CPU 500 MHz
(AMD Geode)

700 Mhz
(ARM 11)

1.6 GHz Dual-Core
1.2GHz
(ARM 7)

RAM 256 Mb 256 Mb Up to 8 Gb 1 Gb

HDD FLASH card SD card 2 serial ATA 4Gb Nand
Flash

Serial Port yes no Yes no

GPIO no yes Yes yes

Cooling Fan less Fan less Fan based Fan less

Cost < 100 € < 40 € < 200 € <70 €

The control layer: how to choose the right software

the goal is to implement the main controller, the local controllers

should be firmware

the main controller have to:

deal with the communication layer

deal with the interfaces: both buttons, touch and BCI: a full-OS is

required

include more complex functionalities (e.g. fault detection and

isolation module, energy saving functions etc.)

Linux is the favourite choice for the operating system

C or Java as programming languages

C it is platform-dependent and it is not so easy to integrate with

other software

Java has a large variety of libraries and software ready-to-use but

it has worse performance than C

A generic home automation architecture

The Interface Layer

The Interface layer

We want to offer to the user the opportunity to command his

house from smartphone, tablet, smart-tv and so on

We need to develop a web application and we need a lightweight

web server where deploy it

Gateway

Dev 1 Dev 2 Dev n

Client 1 Client 2 Client n

bus

http

Waist-line

Different modalities to offer

real time interaction

Polling

Piggyback polling

Comet

Polling

The browser makes a request of

the server at regular and frequent

intervals to see if there has been

an update. It's like a 5 year old in

the back of the car shouting 'are

we there yet?' every few seconds.

To get the server events as soon

as possible, the polling interval

must be as low as possible.

Drawback: if this interval is

reduced, the client browser is

going to issue many more

requests, many of which won't

return any useful data, and will

consume bandwidth and

processing resources for nothing.

Browser Server

Ajax request #1

Response (no data)

Ajax request #2

Response (no data)

Ajax request #3

Response with data

Event 1

Event 1

The Interface layer: asynchronous notification to the client

The Interface layer: asynchronous notification to the client

Browser Server

Client action #1

Response

Client action #2

Response

Client action #3

Response with
mixed data

Event 1

Event 1

Piggyback polling

The server, having an update

to send, waits for the next time

the browser makes a

connection and then sends it's

update along with the response

that the browser was

expecting.

Is a much more clever method

than polling since it tends to

remove all non-needed

requests (those returning no

data).

There is no interval; requests

are sent when the client needs

to send a request to the server

Browser Server

Long-lived request #1

Response (no data)

Long-lived request #2

Event 1

Event 1

Request #1 completed

Request #2 completed

Comet

It is a web application model,

encompassing multiple techniques for

achieving server push notification

Specific methods of implementing

Comet fall into two major categories

Streaming: a single persistent

connection from the client browser

to the server for all Comet events

Long Polling: The browser makes an

Ajax-style request to the server,

which is kept open until the server

has new data to send to the

browser, which is sent to the

browser in a complete response.

The browser initiates a new long

polling request in order to obtain

subsequent events.

The Interface layer: asynchronous notification to the client

The Interface layer: asynchronous notification to the client

Comet is also known by several other names, including Ajax Push ,

Reverse Ajax, Two-way-web, HTTP Streaming and HTTP Server

Push

Browser-native technologies are inherent in the term Comet.

Attempts to improve non-polling HTTP communication have come

from multiple sides:

HTML 5 WebSocket API working draft specifies a method to create a

persistent connection with a server and receiving messages via an

onmessage callback

The Bayeux protocol by the Dojo Foundation, based on a pub/sub

model with the aim of re-use of client-side JavaScript code with

multiple Comet Servers

The JSONRequest object as an alternative to the XHR object

Use of plugins, such as Java applets or the proprietary Adobe Flash

Work identically across all browser

You need to install the plugin

The control interface layer: from Ajax to Comet

Server Side:

The control interface layer: from Ajax to Comet

Server Side:

The control interface layer: from Ajax to Comet

Client Side:

Project 1: a smart SMS gateway

 the project has the aim to implement a multi-provider sms

 gateway able to send and receive sms via REST/COMET

 interface selecting for every message the most convenient

 (€) provider

Project 2: 3-lines LCD display java driver

 the project has the aim to implement a Java driver for a simple

 3-line LCD display (Arduino style) for Cubieboard 2 board

Project 3 (thesis oriented): voice interface for smart spaces

 the project has the aim to implement a smart device able to

 deal with the house inhabitants providing information, storing

 plans and programming the environment. The project must be

 based on Android voice recognition API

Exam > Avalaible Projects

Thank you

for the attention

Mariano Leva

leva@dis.uniroma1.it
In collaboration with:

